

After reading this chapter, you will understand:

 The procedure oriented programming concepts and
object oriented paradigm.

 The basic concepts of object oriented
programming.

 Benefits of object oriented programming.
 Applications of object oriented programming.
 Structure of a C++ program, writing a sample C++

program, compiling and running a program.
 The different types of errors in programming.

1.1 Introduction
 1.1.1 Procedure Oriented Programming
 1.1.2 Object Oriented Programming
1.2 Concepts of OOPS
 1.2.1 Benefits of OOPS
 1.2.2 Application of OOPS
1.3 The Software Life Cycle
1.4 Structure of C++ program

 1.4.1 A sample C++ program
 1.4.2 Compiling and running

 1.4.3 Testing and debugging
 1.4.4 Applications of C++

1.5 Summary
1.6 Technical Terms
1.7 Model Questions
1.8 References

Lesson 1: Introduction To
Object-Oriented Programming

Objectives

Structure Of the Lesson

C++ is an object oriented programming language. It was
initially named as C with classes. However in 1983, it was
renamed as C++. C++ was developed by Bjarne
Stroustrup at AT & T Bell laboratories, New Jersey, U.S.A.
It is an enhancement of the C programming language with
the major addition of class construct feature of Simula67. It
was built upon C and hence all standard C features are
also available in C++. Thus C++ is the superset of C.
Almost all C programs are also C++ programs.

The three important facilities that C++ have are C with
classes, function overloading and operator overloading.
These features help to create abstract datatype,
inheritance from existing datatype and polymorphism. C++
allows the programmer to build programs with clarity,
extensibility and ease of maintenance.

Procedure oriented programming is viewed as a sequence
of things to be done, such as reading, calculating, printing
etc. A number of functions are written to accomplish these
tasks. The primary importance is given to functions and
little is given to data that are being used by various
functions.

Data is placed as global, so that they may be accessed by
all the functions. Each function can have its own data.
Global data can be used by any function so that it is
difficult to identify what data is used and by which function.

1.1 Introduction

1.1.1 Procedure Oriented Programming

Procedure Oriented programming does not model real
world problems very well.

Some Important Characteristics Are:

 Importance is given in doing the algorithms.
 Large programs are divided into smaller programs

known as functions.
 Most of the functions share global data.
 Data move over the system from function to

function freely.
 Functions transforms the data from one form to

another.
 Employs top-down approach in program design.

Object oriented programming is an approach that provides
a way of modularizing the programs by creating partitioned
memory area for both data and functions that can be used
as templates for creating copies of such modules in
demand.

OOPS treats data as a critical element in the program
development and does not allow it to freely flow around the
system.

1.1.2 Object Oriented Programming

It ties data more closely to the function that operates on it
and protects it from accidental modifications from outside
functions. OOP allows us to decompose the problem into
number of entities called objects and build data and
function around them. Data of an object can be accessed
only by functions associated with that object. Functions of
one object can access the functions of another object.

Important Features:

 Importance is given to data then the functions.
 Programs are divided into objects.
 Data Structures characterize the objects.
 Functions that operate on the data of the object are

tied together in the data structure.
 Data is hidden and cannot be accessed by the

external functions.
 Objects may communicate with each other through

functions.
 New data and functions can be easily added.
 Follows bottom-up approach is used in the program

design.

Object1 Object 2

 Object3

Functions

Data

Functions

Functions

Data

Data

The major Concepts of Object Oriented Programming are:

1. Class
2. Object
3. Abstraction
4. Encapsulation
5. Data Hiding
6. Inheritance
7. Reusability
8. Polymorphism
9. Virtual Functions
10. Message passing

Class: Class is an abstract data type (user defined data
type) that contains member variables and member
functions that operate on data. It starts with the keyword
class. A class denotes a group of similar objects.

e.g.: class employee
 {
 int empno;

 char name[25],desg[25];
 float sal;

 public:
 void getdata ();
 void putdata ();
 };

Object: An object is an instance of a class. It is a variable
that represents data as well as functions required for
operating on the data. They interact with private data and
functions through public functions.

e.g.: employee e1, e2;

1.2 Concepts Of OOPS

 In the above example employee is the class name and e1
and e2 are objects of that class.

Abstraction: Abstraction refers to the process of
concentrating on the most essential features and ignoring
the details. There are two types of abstraction

i) Procedural Abstraction
ii) Data Abstraction

Procedural Abstraction: Procedural abstraction refers to
the process of using user-defined functions or library
functions to perform a certain task, without knowing the
inner details. The function should be treated as a black
box. The details of the body of the function are hidden from
the user.

Data Abstraction: Data Abstraction refers to the process
of formation of user defined data type from different
predefined data types.
e.g: structure, class.

Encapsulation: Encapsulation is the process of combining
data members and member functions into a single unit as
a class in order to hide the internal operations of the class
and to support abstraction.

Data Hiding: All the data in a class can be restricted from
using it by giving some access levels (visibility modes).
The three access levels are private, public, protected.

Private data and functions are available to the public
functions only. They cannot be accessed by the other part
of the program. This process of hiding private data and
functions from the other part of the program is called as
data hiding.

Inheritance: Inheritance is the process of acquiring
(getting) the properties of some other class. The class
whose properties are being inherited is called as base
class and the class which is getting the properties is called
as derived class.

Reusability : Using the already existing code is called as
reusability. This is mostly used in inheritance. The already
existing code is inherited to the new class. It saves a lot of
time and effort. It also reduces the size of the program.

Polymorphism: Polymorphism means the ability to take
many forms. Polymorphism allows to take different
implementations for same name.

 poly  many
 morphism  forms

There are two types of polymorphism, Compile time
polymorphism and run time polymorphism. In Compile time
polymorphism binding is done at compile time and in
runtime polymorphism binding is done at runtime.

e.g.: Function overloading, operator overloading

 Base Class

 Derived Class

Function Overloading: Function overloading is a part of
polymorphism. Same function name having different
implementations with different number and type of
arguments.

Operator Overloading: Operator overloading is a part of
polymorphism. Same operator can have different
implementations with different data types.

Virtual Functions: Virtual functions are special type of
functions which are defined in the base class and are
redefined in the derived class. When virtual function is
called with a base pointer and derived object then the
derived class function will be called. A function can be
defined as virtual by placing the keyword virtual for the
member function.

Message Passing: An object-oriented program contains
a set of objects that communicate with one another. The
process of object oriented programming contains the basic
steps:

1. Creating classes
2. Creating objects
3. Communication among objects

This communication is done with the help of functions (i.e.,
passing objects to functions)

 Through inheritance, we can eliminate redundant

code and extend the use of existing classes.

1.2.1 Benefits Of OOPS

 Programs can be built from the standard working
modules that communicate with one another ,
rather than writing the code from scratch. This
leads to saving of development time and higher
productivity.

 Principle of data hiding helps the programmer to

build secured programs. It is possible to have
multiple instances of objects to co-exist without any
inheritance.

 Easy to partition the work in project based objects.

 It is possible to map objects in the problem domain

to those objects in the program.

 Software complexity can be easily managed.

 Message passing techniques for communication
makes the interface descriptions with external
systems much simpler.

 The data-centred design approach enables us to

capture more details of a model in implementable
form.

The promising areas for application of OOP includes:

 Real-time systems
 Simulation and modeling
 Object-oriented databases
 Hypertext,hypermedia and experttext
 AI and expertsystems
 Neural networks and parallel programming
 Decision support and Automation system
 CIM/CAM/CAD systems

1.2.2 Applications of OOPS

The software development process is divided into six
phases known as software life cycle. The six phases of this
life cycle are:

 Analysis and specification of the task (problem
definition)

 Design of the software (algorithm design)
 Implementation (coding)
 Testing
 Maintenance and evolution of the system
 Obsolescence

C++ program contains 4 sections. These may be placed in
separate code files and then compiled independently or
jointly. A program is commonly organized into 3 separate
files. The class declarations are placed in a header file and
the definitions of member functions go into another file.

This helps the programmer to separate the abstract
specification of the interface (class definition) from the
implementation details (member function definition). The
main program is placed in a third file which includes the
previous two files as well as any other files required.

1.4 Structure of C++ Program

1.3 The Software Life Cycle

Structure of C++ program

//sum of two integers
#include <iostream.h> //include header file
int main()
{
 int x,y,sum;
 cout <<”Enter any 2 numbers: ”;
 cin>>x>>y;
 sum = x + y;
 cout << “The given numbers are ”;
 cout<<x;
 cout<<” and ”;
 cout<<y;
 cout<<”\n”;
 cout<<”Their sum is ”<<sum<<”\n”;
 return 0;
} //End of example

Include files

Class Declaration

Class functions definitions

Main function program

1.4.1 A Sample C++ Program

Output:
 Enter any 2 numbers: 4 5
 The given numbers are 4 and 5
 Their sum is 9

In order to make a program understandable, some
explanatory notes is included at key places in the program.
Such notes are called comments. In C++ the symbols //
are used to indicate the start of the comments. The
comment starts with a // and terminate at the end of the
line. A comment may start any where in the line, and
whatever follows till the end of the line is ignored. // is a
single line comment.

Example:

 //This is a
 //sample C++

//program

The C comment symbols /*-------*/ is also valid and are
suitable for multiline comments. Either or both of the styles
can be used in the programs.

Example:

 /*This is a sample C++ program*/

The program begins with the line:

#include<iostream.h>

This is called include directive. It tells the compiler where
to find information about certain items that are used in your
program. iostream is the name of the library that contains
the definitions of the routines that handle input from the
keyboard and output to the screen. iostream.h is the file
that contains the information about the library.

Directives begin with the symbol # at the very start of the
line and no space is included between # and include. A
C++ program is a collection of functions. The above
example contains one function, main(). The program starts
with

int main()
{
and ends with
return 0;
}

As the return type of the function is integer, 0 is returned
here.The lines between the beginning and ending {} are
the heart of the program.

 int x,y,sum;

This line is called variable declaration. The variable
declaration tells the computer that x,y and sum are the
name of the three variables used in the program. int word
tells the computer the numbers named by these variables
are integers.

The remaining lines are the instructions that tell the
computer to do the corresponding work. These instructions
are called executable statements or statements. Every
statement should end with a semicolon.

Most of the statements begin with the word cout or cin.
These statements are the input and output statements.
The << and >> arrows are the operators which tell the
direction in which the data is moving.

The operator << is called the insertion operator or put to
operator. It inserts (or sends) the contents of the variable
on its right to the objects on its left. Cout is a predefined
object that represents the standard output stream in C++.

Here the standard o/p stream represents the screen. <<
operator can be overloaded.

Ex: cout<<”Enter two numbers”;
 cout<<sum;

 screen

 object insertion operator variable

The operator >> is known as extraction or get from
operator. It extracts or takes the value from the keyboard
and assigns it to the variable on its right. >> operator can
also be overloaded.
e.g.: cin >> x ;

 Object Extraction operator Variable

 Keyboard

…………
…..
…………
……
…………

<< sum cout

cin >> x

Cascading of I/O operators: The multiple use of << in
one statement is called cascading. This is known as
cascading of output operator.

e.g.: cout<<”Their sum is”<<sum<<”\n”;

This statement sends the string “Their sum is” to cout and
then sends the value of sum, then the newline.

Similarly, >> operator can be cascaded. This is known as
cascading of input operator.

e.g.: cin>>x>>y;

sum = x+y;
cout<<

This is the computational statement. The values of x and y
are summed up with + operator and the value is stored in
the variable sum.
 cout<<”Their sum is ”<<sum<<”\n”;
“\n” contained at the end of the output statement tells the
computer to start a newline after writing the text.

C++ program is typed in using a text editor. There are
different text editors. Turbo C++ provides a built-in editor
and a menu bar including the options such as File, Edit,
Compile and Run. The source file is created and saved
under the File Option and can be edited under Edit option.
The program is compiled under Compile Option and Run
using Run option.

1.4.2 Compiling and Running

 Compilation of the program will produce a machine-
language translation of the source code, called the object
code. The object code must be linked (combined) with the
object code for routines (input and output routines) that are
already written. Run option executes the program. If there
are no errors in the program, then compiling, linking and
running will go smoothly. However, errors may occur which
has to be rectified and executed.

A mistake in the program is usually called a bug, and the
process of eliminating bugs is called debugging. There are
three kinds of programming errors. They are

 Syntax errors
 Runtime errors and
 Logical errors

The errors that are caused due to the violation of syntax
(grammar rules) of the programming language are called
syntax errors. E.g.: Omitting semicolon at the end of the
statement. These errors can be found during compilation.

There are certain kinds of errors that the computer system
can detect only when the program is run. These are run-
time errors. Eg:If a computer attempts to divide a number
by zero.

There are certain kinds of errors, which cannot be
identified during compilation. The program is run
successfully but the output is wrong. This is due to a
mistake in the logic of the program. These are known as
logical errors.

1.4.3 Testing and Debugging

E.g.: By mistake, using + instead of * during addition of two
numbers.

 C++ is a versatile language for handling very large

programs.

 C++ is suitable for virtually any programming task

including development of editors, compilers,
databases, communication systems and any complex
real life application systems.

 Since C++ allows us to create hierarchy-related

objects. We can build special object oriented libraries
which can be used later by many programmers.

 C++ programs are easily maintainable and

understandable.

Procedure oriented programming follows a Top Down
approach where the problem is viewed as sequence of
tasks. Functions are used to implement it.

To overcome the drawbacks, such as free movement of
data around the program and as it is difficult to model real
world problems, object oriented programming is
introduced.

Object oriented programming follows a Bottom Up
programming approach and it does not allow data to move
freely.

1.5 Summary

1.4.4 Applications Of C++

The different concepts of OOPS like class, object,
encapsulation, abstraction, inheritance, polymorphism,
dynamic binding, message passing are briefly discussed.

Advantages and applications of OOPS are discussed.

The structure of a C++ program , writing a sample
program, compiling, debugging and running of the
programs are discussed.

The applications of C++ are covered.

Object : An entity that can store data and, send and
receive messages. An instance of class

Class: A group of objects that share common properties
and relationships. A class is a new data type that contains
member variables and member functions that operate on
the variables.

Data Abstraction: The insulation of data from direct
access by the programs.

Encapsulation: The mechanism by which the data and
functions (manipulating this data) are bound together
within an object definition.

Inheritance: Mechanism of deriving a new class from an
old class.

Polymorphism: A property by which objects belonging to
different classes are able to respond to the same
message, but in different forms.

1.6 Technical Terms

Dynamic Binding: The addresses of the functions are
determined at runtime rather than compile time. This is
also known as late binding.

1. Define Procedure oriented programming?
2. Define object oriented programming?
3. What is the difference between object oriented

programming and procedure oriented programming?
4. Write the concepts of object oriented programming?

Object-oriented programming with C++
 by E. Bala Gurusamy.

Problem solving with C++
 by Walter Savitch

Mastering C++

 by K.R.Venugopal,
Rajkumar Buyya, T.Ravi Shankar

AUTHOR:
M. NIRUPAMA BHAT, MCA., M.Phil.,
Lecturer,
Dept. Of Computer Science,
JKC College,
Guntur.

1.7 Model Questions

1.8 References

